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LETTER TO THE EDITOR 

The notion of a strange fractal phenomenon-disorder 
induced walk 

R B Pandey 
Cavendish Laboratory, Cambridge CB3 OHE, UK 

Received 8 May 1984 

Abstract. I t  is argued that a random system coupled with a walk may cause an unusual 
phenomenon which shares some of the opposite properties of fractals. 

‘How important is the concept of fractal in physics’ has been witnessed by recent 
publications, conferences and meetings. The idea of fractals has greatly added to 
unifying the understanding of complex physical systems: for example, gelation and 
polymerisation in polymers, flocculation and coagulation in colloidal physics, percola- 
tion in a wide variety of systems (e.g. metal-insulator transitions, magneticnonmag- 
netic transition in dilute magnets etc), aggregation (diffusion limited, cluster-cluster, 
reaction limited etc) and dendretic growths in dust, soot and materials etc. Thanks 
are due to Mandelbrot (1982) who brought the mathematical concept closer to physical 
realities; he has popularised the subject (Dhar 1977) during the last few years to such 
an extent that the two words ‘Mandelbrot’ and ‘fractal’ have become synonymous-a 
classic example is his book ‘The Fractal Geometry of Nature’. Apart from calculating 
just the fractal dimensionalities by studying the variation of the radius of gyration of 
ramified objects with the number of sites enclosed in it, there are several ways in which 
the notion of fractals provides physical insight into physical phenomena. The very 
simple study of random walk diffusion on homogeneous fractals (Leyvraz and Stanley 
1983) has revealed many interesting results (Gefen et a1 1983, Rammal and Toulouse 
1983, Havlin and Ben-Avraham 1983, Pandey and Stauffer 1983, Pandey et a1 1984) 
using the self-similarity arguments valid over the range of fractal dimensions. The 
superuniversal Alexander-Orbach (1982) conjecture valid for the homogeneous fractals 
came in a very elegant way into the framework of self similarities (the superuniversal 
law does not seem to be valid for the inhomogeneous fractals). Extrapolating the 
arguments based on these simple established results, here we discuss the possibility 
of a ramified system coupled with a walk which shares the opposite properties of a 
fractal. 

Let us consider the random walk motion on a fractal of fractal dimensionality Df 
embedded in a d-dimensional Euclidean space. The root mean square displacement 
R is given by (Rammal and Toulouse 1983) 

R - tk ,  (1) 

k =  Q/(2Df), (2) 
where Ds is the spectral dimensionality of the fractal. On a Euclidean lattice where 
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D, = Df, the exponent k has the standard value i. On a fractal the exponent attains a 
value kf such that k , S k  For example, for the random walk motion on Sierpinsky 
gaskets, 

kf = In 2/ln 5 (Df= In 31111 2, d = 2), 

=In 2/ln 6 (Df=2,  d =3). (3) 

For the random walk motion on percolating fractals, we have (Gefen et al 1983, Pandey 
and Stauffer 1983, Pandey et al 1984, Havlin and Ben-Avraham 1983, Zabolitzky 1984) 

kf = 0.33 (Df = 1.8, d = 2), 

= 0.20 (0, = 2.5, d = 3), (4) 

at the percolation threshold where the infinite cluster shows self similarities at all 
length scales (the upper bound for the length scale of self similarity here is the 
percolation correlation length). There are several other examples of this kind, e.g. 
random walk on random walk (Ball and Cates 1984), random walk on DLA (Meakin 
and Stanley 1983) etc, which show similar exponent inequality. Thus, generalising this 
result, a walk of dimensionality I l k  in a Euclidean dimension d seems to have its 
dimensionality 1 / kf in an embedded fractal of dimensionality Df such that 

Ilk,=. l l k  for Df < d. ( 5 )  

Now, if there exists a random system on which the walk has dimensionality l lk ,  such 
that 

1/k,< I l k  (6) 

then, in scientific jargon, it is tempting to call such random systems 'antifractal' in the 
context of our discussion here. Below we quote the possibility of such a random system. 

Recently, Heinrichs and Kumar (1984) have discussed the motion of a particle 
subject to a continuously distributed random force with both static and dynamic 
components in a one-dimensional continuum. The model is defined by the equation 
of motion 

x = F ( x ) + q ( t )  (7) 

where F(x) and T ( f )  are independently distributed random variables with gaussian 
white noise correlations, 

( F ( x ) F ( x ' ) )  = F$(x - x'), (T(f)T(ff)) = T W  - x'), ( m ) )  = (V(t))  = 0. 
(8) 

They (Heinrichs and Kumar 1984) claim to show exactly that the average moments 
are given by (for all m = 1,2, . . .) 

(x2"(t))- f z m ,  (xZm+') = 0, t+m, (9) 
and that this ballistic motion (x2(t)) - tZ is induced by purely static disorder, indepen- 
dent of the time varying force component. This may be one example where the disorder 
is facilitating the random walk motion, changing from random walk to ballistic motion 
and, therefore, reducing the dimensionality of the walk (from 2 to 1) in contrast to the 
earlier examples of a random walk on fractals. This disorder medium coupled with a 
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walk may then be said to exhibit an ‘antifractal phenomenon’; this word is valid only 
in the context of properties mentioned here, and caution must be taken in using it in 
a general sense, as it may be misleading. 

An immediate question arises, how to realise a random system which shows the 
unusual behaviour mentioned above. Let us try to model such space at least crudely. 
Consider a one-dimensional system wit5 lattice sites distributed randomly (see figure 
1). The lattice constant U has a distribution having values with minimum length amin 

Dmor 

Figure 1.  Schematic representation of one-dimensional Levy lattice. 

to maximum length amax. Let us consider a random walker executing its random walk 
with length step equal to a much larger than the minimum lattice constant; say it is 
equal to amax. When the walker is in the rare region of space it is hopping on fewer 
sites than when it is in the compact region. The diffuser is always making jumps in 
forward and backward directions with the same length steps but it is passing by a 
different number of sites, say L ;  in the compact region, L is larger than in the rare 
region. If the distribution of the sites (or the occupied sites in a lattice) (see figure 1) 
is such that it causes the topological length step L of the random walker to satisfy the 
conditions 

P(L> U )  = U-f, P ( L <  1)=0, (10) 

where P ( L >  U )  is the probability that the length step will be greater than or equal to 
U ( U  > amax), then, topologically, the walker is making a Levy flight with varying 
length steps L which may give rise to walks of different dimensionalities lying between 
1 and 2 for 1 <f< 2. (Note that such a disordered system may be called a Levy lattice 
in analogy with a Levy flight.) A walk of an extreme dimensionality 1 (i.e. ballistic 
motion) can then be imagined without much conceptual difficulty. In any case, such 
a random medium which enhances the power law exponent of the walk from that of 
its value on the corresponding homogeneous lattice (the random walk value is f )  would 
be said to exhibit an antifractal phenomenon. One may perhaps realise several 
geometries sharing these features including those in an embedded space of higher 
dimensions. 

Thus our strange fractal system (which in a very crude sense may be called an 
antifractal system) shares the opposite properties of the fractals, namely, the value of 
the power law exponent for the random walk on a fractal is reduced with respect to 
its value on an embedded Euclidean space, while the value of this exponent for the 
random walk in.the strange fractal system is enhanced with respect to its value on an 
embedded Euclidean space, i.e. the ratio of the topological and spectral dimensionality 
of the fractal system is greater than that of its value in a strange fractal system. Fractal 
and antifractal phenomena taking place in the same embedded space may annul the 
effect of each other, at least for the random walk behaviour considered above. 

The author thanks D Stauffer and S Marianer for discussions and SERC for financial 
support. 
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